

NYS Utility Corridor Pollinator Habitat Guidelines

Background and Document Goals

Pollinators are integral to our food system with over one third of global food production dependent on their ecosystem services (Klein et al. 2006). Large scale loss of native wildflower habitat has dramatically decreased pollinator population in recent years, creating an immediate need for habitat restoration (Steffan-Dewenter et al. 2005). Energy utility projects such as solar electric generating systems could be suitable locations for restoration of this sun-dependent, wildflower dominated ecosystem.

New York State Department of Agriculture and Markets (hereafter referred to as the Department) offers these guidelines for the creation of native insect pollinator habitat on property developed for energy utility or other commercial enterprises. The goal of this document is to provide minimum criteria for vegetation plans on construction projects that can be considered "pollinator friendly" or to provide benefits and protection to pollinators by the Department. Project Sponsors are encouraged to restore native pollinator habitat per the following guidelines of 1) Planning and Site Preparations, 2) Seeding, Planting, & Community Establishment, and 3) Operation & Maintenance (O&M).

1. Planning and Site Preparations

- a. Site Considerations
 - i. Site History
- Prior land use may affect the establishment of a pollinator habitat. Do not use locations
 where pre-emergent herbicides were used in the current season, as they could prevent
 seed germination. Additionally, areas with known soil compaction may reduce wildflower
 seed germination and growth and should be avoided for pollinator habitat restorations.
 - ii. Additional and Surrounding Land Uses
- Consider additional site uses and surrounding areas. Do not site pollinator habitat in locations where human health and safety could be impacted. This may include concerns ranging from traffic visibility or the potential for insect stings and bites to the public participating in nearby recreation. If the pollinator habitat site is adjacent to agricultural fields, consider planned pesticide use on the agricultural fields (see Section 1.b.).
 - iii. Existing Natural Resources
- Site pollinator habitat with enough sunlight for plant and wildflower establishment. Avoid shading as much as possible from surrounding trees and buildings.
- Do not choose locations of excessively steep slopes (>10%) or highly erodible land. While native revegetation is often suggested for erodible sites, high-quality pollinator habitat restoration is encouraged on relatively flat and accessible land. This will also support future ease of maintenance/restoration efforts.
- Avoid areas of excessive flooding and locations that pool or hold water for extended periods of time. Wetlands should generally be avoided, but sites with regularly saturated

- soils are acceptable with the appropriate wet-mesic species planting (Appendix 1 NY Pollinator Habitat Seed Mixes).
- Site soils should be capable of supporting plant growth. Visually assess the vegetative cover of the site during normal growing conditions to determine the soil's vegetative productivity. Place a one meter squared (m²) or 3' x 3' sampling quadrat in an area of the site that is representative of the total vegetative cover and estimate the percent area with plant cover. Multiple quadrats may be necessary to sample the area, particularly if the community cover is not consistent over the entire area. If the total area cover of all vegetation in the sampling quadrats consistently is less than 50%, it is likely that the soils will require amendments before supporting pollinator habitat. If this threshold is met, submit a sample of the site's soils to the Cornell Soil Health Laboratory for a Comprehensive Assessment of Soil Health (CASH) Test. Any sites with samples receiving an Overall Quality Score less than 40 are considered ineligible for pollinator habitat restoration unless the corrective measures suggested in the CASH report are implemented.
- Excessively high soil nutrients can lead to aggressive weedy plant invasion (Burns 2004). Avoid placing pollinator habitat restorations downstream of excessive nutrient and sediment stormwater loading (i.e. former barnyard runoff, areas of livestock concentration, riparian areas containing sediment deposits etc.) or in areas known to be of particularly rich nutrient soils. If high nutrient loading into the site is unavoidable, utilize aggressive invasive species management in O&M.

Stormwater runoff from nearby operations can deliver high quantities of nitrogen, phosphorus, and sediment to an area. These conditions can encourage weedy growth and should be avoided when placing pollinator habitat. Image Credit: USDA Cooperative Extension 2020; Center for TMDL and Watershed Studies 2006.

Consider the existing weed community and pressure of the site. While evaluating the total
cover for soil productivity, the predominant species of weeds in each quadrat should be
noted to help determine the need for management. Particular attention should be paid to
woody perennials weeds, difficult to control weeds, and invasive plants.

Sites with existing low weed pressure should take preference, however, sites of high weed and invasive species pressure may be considered with appropriate site preparation (See Section 2a – Site Preparation: Existing Vegetation Management). A site with relatively low existing weed pressure has the advantage of higher seed to soil contact and a less competition from perennial weeds. A site should be considered to have "high" weed pressure if it is visually determined that greater than 50% of the site is dominated by persistent and invasive weed species (Xerxes 2018). Species considered weedy and invasive include all those on the New York State Prohibited and Regulated Invasive Plants list (NYSDEC 2014) (https://www.dec.ny.gov/docs/lands forests pdf/isprohibitedplants2.pdf) and any others that the project sponsor deems a nuisance or problematic to pollinator habitat establishment.

Examples of Existing Site Weed Pressure

Provided are examples of sites with existing high, medium, and low weed pressure. The bottom left of each photo shows an example of weed coverage (orange) in a typical 1-m2 or 3'x3' quadrat of such a site.

Top: Example of a high weed pressure site, characterized by dense vegetation dominated by persistent and invasive weed species greater than 50% of the area as viewed from the ground; these sites require the most site preparation and vegetation management for conversion pollinator habitat.

Middle: Example of a medium weed pressure site, characterized by a low-growing, manageable weed population covering 10-49% of the area as viewed from the ground; these sites can be prepared for pollinator habitat conversion with less intensive means than high weed pressure sites.

Bottom: Example of a low weed pressure site, characterized by having less than 10% weed species cover as viewed from the ground; these sites require little to no vegetation management prior to conversion to pollinator habitat. Photo Credit: Xerxes Society, Kelly Gill 2018.

Note that a site may have low weed pressure due to an overall low soil quality preventing any vegetation from establishing. Also, sites with low existing weed pressure may still have abundant weed seeds in the seed bank that could germinate at a later point. Therefore, these visual assessments of weed pressure are considered guidance and should be balanced with appropriate site preparation and management.

b. Surrounding Pesticide/Herbicide Use Buffers

- A 10' biannually-mowed, cool-season grass dominated buffer/access path will surround
 the habitat restoration, regardless of the surrounding agricultural operation or pesticide
 use. This buffer may be used for accessibility of people and equipment to the restoration
 for purposes of installation and O&M.
- Agricultural operations with no pesticide use in adjacent fields require no additional buffer than the 10' access path.
- Agricultural operations with ground applied pesticide other than neonicotinoids in adjacent fields require a 50' buffer in addition to the 10' access path. There are no vegetation requirements for this buffer area besides that it is not under active pesticide treatment (Xerxes 2016).
- Agricultural operations with ground applied neonicotinoid pesticide in adjacent fields requires a 125' buffer in addition to the 10' access path. There are no vegetation requirements for this buffer area besides that it is not under active pesticide treatment (Xerxes 2016).
- Aerial application of pesticide on adjacent fields disqualifies the site as pollinator habitat.

2. Seeding, Planting, and Community Establishment

a. Site Preparation

- i. Existing Vegetation Management
- All existing vegetation management and removal will be done in accordance with the NRCS-NY Practice standards Brush Management (314) and Herbaceous Weed Treatment (315) (Appendix 2 – NRCS-NY Conservation Practice Standards).
- All Herbicide applications will be performed by a current possessor of a NYS Pesticide Applicator License in accordance with all state and federal laws.
- Additional, non-herbicide options for weed and invasive species management may be considered (i.e. solarizing, smother crop, etc.); however, controlled burning is not allowed.

ii. Soil Preparation

- The site's soils will be prepared and vegetation established in accordance with the NRCS-NY Practice standard Critical Area Planting (342).
- Lightly disk or shallow till the habitat restoration to a depth of approximately 4-6" prior to seeding or planting (Missouri DNR 2000). Soil tilling can potentially unearth a dormant weed seed, which could result in a more frequent need of vegetation management and site mowing than initially predicted.
- Avoid fertilizers or other soil additives unless the site's Cornell CASH Test suggests supplementation is required for vegetative growth.

b. Seed Mix

The restoration will include the sowing of the NY Pollinator Habitat Seed Mixes
(Appendix 1). The seed mix will be applied at a rate of 7.5-8 PLS/acre. Soils
determined to be hydric by the NRCS Web Soil Survey
(https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm) will receive a Wet-Mesic
Mix and soils determined to be non-hydric will receive a Dry-Mesic Mix.

c. Seeding Dates

i. Spring – Mid April-Late May; post-frost (Appendix 3 – NY State Freeze Frost Occurrence Data). Seeding in this time provides the benefit of improved or drier site conditions but runs the risk of greater weed competition. Fall–Late October-Early November; pre frost (Appendix 3 – NY State Freeze Frost Occurrence Data). The cold-moist stratification of seeds during this time improves germination, but site conditions can be challenging.

d. Establishment Methods

- i. Seeding if broadcast seeding, ensure a smooth, lightly packed seed bed before application. Mix the seeds with an equal or greater volume of a slightly damp, inert carrier such as sand, vermiculite, sawdust, or rice hulls. Apply mix evenly throughout the site and press to soil with turf grass roller or cultipacker.
- ii. Hand Planting installation of adult perennials to begin the restoration is encouraged, however, not necessary. Follow contractor or nursery recommendations for best establishment.

Regular, annual mowing of the site is required for planted species establishment and weed suppression – ensure that a mowing regimen is built into the first-year establishment plan

3. Operation & Maintenance (O&M)

An O&M Plan will be written and implemented for the site which is in compliance with the NRCS-NY Practice Standard Early Successional Habitat Development/Management (647) (Appendix 2 – NRCS-NY Conservation Practice Standards). Additionally, the site will meet the following requirements of diversity and community establishment:

- a. Diversity Establishment
 - i. The site will be monitored for two years following installation for diversity establishment. One meter squared (m²) or 3' x 3' sampling quadrats will be placed on 1% of the project area to obtain an estimate of species area cover.
 - >70% cover of planted (i.e. NRCS Pollinator Seed Mix)
 - <5% Invasive Species Cover (NYSDEC Invasive Species List)</p>
 - *If vegetation cover criteria are not met by the end of year two, corrective measures will be implemented, and the project will be monitored yearly until they are met.
- b. Woody Species Management
 - i. The O&M will specifically address woody species removal from the project area. At a minimum, the site will be mowed annually.

Citations

Burns, Jean H. "A comparison of invasive and non-invasive dayflowers (*Commelinaceae*) across experimental nutrient and water gradients." *Diversity and Distributions* 10.5-6 (2004): 387-397.

Center for Watershed and TMDL Studies. Virginia Polytech Institute and State University. 2020. Modeling Channel Erosion at the Watershed Scale: Model Review and Case Study.

Klein, Alexandra-Maria, et al. "Importance of pollinators in changing landscapes for world crops." *Proceedings of the royal society B: biological sciences* 274.1608 (2007): 303-313.

Missouri Department of Natural Resources. 2000. Wildflower Planting. URL: http://www.dnr.state.mi.us/publications/pdfs/huntingwildlifehabitat/landowners_guide/Habitat_M gmt/Backyard/Wildflower Planting.htm. Last Accessed: 3/18/20.

Steffan-Dewenter, Ingolf, Simon G. Potts, and Laurence Packer. "Pollinator diversity and crop pollination services are at risk." *Trends in ecology & evolution* 20.12 (2005): 651-652.

USDA Cooperative Extension, Livestock and Poultry Environmental Learning Community. 2020. Water Quality Issues Associated with Manure. URL: https://lpelc.org/water-quality-issues-associated-with-manure/. Last Accessed 4/2/20.

Xerces Society for Invertebrate Conservation. 2013. "Establishing Pollinator Meadows from Seed". Publications. https://www.xerces.org/publications/guidelines/establishing-pollinator-meadows-from-seed" https://www.xerces.org/publications/guidelines/establishing-pollinator-meadows-from-seed

Xerxes Society for Invertebrate Conservation. 2016. "Guidance to Protect Habitat from Pesticide Contamination". Publications. https://xerces.org/publications/fact-sheets/guidance-to-protect-habitat-from-pesticide-contamination

Xerxes Society for Invertebrate Conservation. 2018. "Planting for Pollinators and Beneficial Insects: New York Wildflower Habitat and Establishment Guide". Publications. https://efotg.sc.egov.usda.gov/references/public/NY/NYWildflowerEstablishmentGuideFinalDraftv52018 02 06.pdf

Appendices

Appendix 1: NY Pollinator Habitat Seed Mixes

Appendix 2: NRCS-NY Conservation Practice Standards

Appendix 3: NY Freeze Frost Occurrence Data

Appendix 1: NY Pollinator Habitat Seed Mixes

NY Pollinator Seed Mix: Wet Mesic Sites									
Scientific Name	Common Name	% Mix (Weight)							
Asclepias incarnata	Swamp Milkweed	3.9 %							
Dichanthelium clandestinum	Deertongue	5.9 %							
Doellingeria umbellata	Flat Topped White Aster	1.4 %							
Elymus virginicus	Virginia Wildrye	44.2 %							
Eupatorium perfoliatum	Boneset	0.5 %							
Eutrochium maculatum	Spotted Joe Pye Weed	0.3 %							
Helenium autumnale	Common Sneezeweed	0.9 %							
Helianthus angustifolius	Narrowleaf Sunflower	1.8 %							
Liatris spicata	Dense Blazing Star	2.3 %							
Lobelia cardinalis	Cardinal Flower	0.3 %							
Lobelia siphilitica	Great Blue Lobelia	0.3 %							
Monarda media	Purple Bergamot	1.6 %							
Rudbeckia hirta	Blackeyed Susan	1.2 %							
Senna hebecarpa	Wild Senna	25.9 %							
Solidago patula	Rough Goldenrod	0.1 %							
Symphotrichum lateriflorum	Calico Aster	0.4 %							
Symphotrichum novi-belgii	New York Aster	1.9 %							
Trandescantia ohiensis	Ohio Spiderwort	1.5 %							
Verbena hastata	Blue Vervain	1.8 %							
Vernonia noveboracensis	New York Ironweed	2.0 %							
Zizia aurea	Golden Alexander	1.8 %							

NY Pollinator Seed Mix: Dry Mesic Sites									
Scientific Name	Common Name	% Mix (Weight)							
Aquilegia canadensis	Eastern Columbine	1.7 %							
Trandescantia ohiensis	Ohio Spiderwort	1.4 %							
Penstemon digitalis	Tall White Beardtongue	1.4 %							
Coreopsis lanceolata	Lance Leaved Coreopsis	6.4 %							
Coreopsis tinctoria	Plains Coreopsis	0.4 %							
Chamaecrista fasciulata	Partridge Pea	4.5 %							
Rudbeckia hirta	Blackeyed Susan	1.2 %							
Gaillardia aristata	Perrenial Blanketflower	6.2 %							
Asclepias syriaca	Common Milkweed	4.1 %							
Asclepias tuberosa	Butterfly Milkweed	4.1 %							
Monarda fistulosa	Wild Bergamot	1.6 %							
Ratibida pinnata	Gray Headed Coneflower	2.8 %							
Verbena stricta	Hoary Vervain	2.8 %							
Monarda punctata	Spotted Beebalm	1.2 %							
Heliopsis helianthoides	Oxeye Sunflower	8.3 %							
Echinacea purpurea	Purple Coneflower	12.5 %							

Pycnathemum tenuifolium	Narrowleaf Mountainmint	0.4 %
Symphotrichum prenanthoides	Zigzag Aster	0.4 %
Solidago speciosa	Showy Goldenrod	0.9 %
Symphotrichu	New Endland Aster	0.7 %
Elymus canadensis	Canada Wildrye	32.5 %
Dichanthelium clandestinum	Deertongue	4.8 %

Appendix 2: NRCS-NY Conservation Practice Standards

Natural Resources Conservation Service CONSERVATION PRACTICE STANDARD BRUSH MANAGEMENT

Code 314

(Ac)

DEFINITION

The management or removal of woody (nonherbaceous or succulent) plants including those that are invasive and noxious.

PURPOSE

- Create the desired plant community consistent with the ecological site or a desired state within the site description.
- Restore or release desired vegetative cover to protect soils, control erosion, reduce sediment, improve water quality, or enhance hydrology.
- Maintain, modify, or enhance fish and wildlife habitat.
- Improve forage accessibility, quality, and quantity for livestock and wildlife.
- Manage fuel loads to achieve desired conditions.
- Pervasive plant species are controlled to a desired level of treatment that will ultimately contribute to creation or maintenance of an ecological site description "steady state" addressing the need for forage, wildlife habitat, and/or water quality.

CONDITIONS WHERE PRACTICE APPLIES

On all lands except active cropland where the removal, reduction, or manipulation of woody (nonherbaceous or succulent) plants is desired.

This practice does not apply to removal of woody vegetation by prescribed fire (use Conservation Practice Standard (CPS) Prescribed Burning (Code 338)) or removal of woody vegetation to facilitate a land-use change (use CPS Land Clearing (Code 460)).

CRITERIA

General Criteria Applicable to All Purposes

Brush management will be designed to achieve the desired plant community based on species composition, structure, density, and canopy (or foliar) cover or height.

Brush management will be applied in a manner to achieve the desired control of the target woody species and protection of desired species. This will be accomplished by mechanical, chemical, burning, or biological methods, either alone or in combination. When prescribed burning is used as a method, CPS Prescribed Burning (Code 338) will also be applied.

NRCS reviews and periodically updates conservation practice standards. To obtain the current version of this standard, contact your Natural Resources Conservation Service State office or visit the Field Office Technical Guide.

When the intent is to manage trees for silvicultural purposes, use CPS Forest Stand Improvement (Code 666).

NRCS will not develop biological or chemical treatment recommendations except for biological control utilizing grazing animals. In such cases, CPS Prescribed Grazing (Code 528) is used to ensure desired results are achieved and maintained. NRCS may provide clients with acceptable biological and/or chemical control references.

In cases where there is insufficient understory vegetation to provide a seed source to result in the desired plant community, use CPS Range Planting (Code 550) or CPS Forage and Biomass Planting (Code 512) to ensure the desired results are achieved and maintained.

Follow-up treatments may be necessary to achieve objectives.

Additional Criteria for Creating the Desired Plant Community Consistent with the Ecological Site

Use applicable ecological site description (ESD) state and transition models to develop specifications that are ecologically sound and defensible. Treatments must be congruent with dynamics of the ecological site(s) and keyed to state and plant community phases that have the potential and capability to support the desired plant community. If an ESD is not available, base specifications on the best approximation of the desired plant community composition, structure, and function to support resilience.

Additional treatments are planned and will be applied to achieve effective control of pervasive plant species through reapplication.

Additional Criteria for Restoring or Releasing Desired Vegetative Cover to Protect Soils, Control Erosion, Reduce Sediment, Improve Water Quality or Enhance Hydrology

Choose a method of control that results in the least amount of soil disturbance if soil erosion potential is high and revegetation is slow or uncertain leaving the site vulnerable to long-term exposure to soil loss.

In conjunction with other conservation practices, the number, sequence, and timing of soil-disturbing operations must be managed to maintain soil loss within acceptable levels using approved erosion prediction technology.

Additional Criteria to Maintain, Modify or Enhance Fish and Wildlife Habitat

Brush management will be planned and applied in a manner to meet the habitat requirements for wildlife species of concern as determined by an approved habitat evaluation procedure.

Conduct treatments during periods of the year that accommodate reproduction and other life-cycle requirements of target wildlife and pollinator species, and in accordance with specifications developed for CPS Wetland Wildlife Habitat Management (Code 644) and CPS Upland Wildlife Habitat Management (Code 645).

Additional Criteria to Improve Forage Accessibility, Quality and Quantity for Livestock and Wildlife

Timing and sequence of brush management must be planned in coordination with specifications developed for CPS Prescribed Grazing (Code 528).

Additional Criteria for Control of Pervasive Plant Species to a Desired Level of Treatment That Will Ultimately Contribute to Creation or Maintenance of an Ecological Site Description "Steady State" Addressing the Need for Forage, Wildlife Habitat, and/or Water Quality.

Additional treatments are planned and will be applied to achieve effective control of pervasive plant species through reapplication.

Additional Criteria to Manage Fuel Loads to Achieve Desired Conditions

Control undesirable woody plants in a manner that creates the desired plant community, including the desired fuel load, to reduce the risk of wildfire, and facilitate the future application of prescribed fire.

CONSIDERATIONS

Consider using CPS Integrated Pest Management (Code 595) in support of brush management.

Consider the appropriate time period for treatment. Some brush management activities can be effective when applied within a single year; others may require multiple years of treatment(s) to achieve desired objectives.

Consider impacts and consequences to obligate species (species dependent on the target woody species) when significant changes are planned to existing and adjacent plant communities.

Consider impacts to wildlife food supplies, space, nesting, and cover availability when planning the method and amount of brush management.

State-issued licenses may be required when using chemical pesticide treatments.

For air quality purposes, consider using chemical methods of brush management that minimize chemical drift and excessive chemical usage, and consider mechanical methods of brush management that minimize the entrainment of particulate matter.

PLANS AND SPECIFICATIONS

Plans and specifications for the treatment option(s) selected by the decision maker will be recorded for each field or management unit where brush management will be applied.

Prepare brush management plans and specifications that conform to all applicable Federal, State, and local laws. These documents will contain the following data as a minimum:

- 1. Goals and objectives clearly stated.
- 2. Pretreatment cover or density of the target plant(s) and the planned post-treatment cover or density and desired efficacy.
- 3. Maps, drawings, and/or narratives detailing or identifying areas to be treated, pattern of treatment (if applicable), and areas that will not be disturbed.
- 4. A monitoring plan that identifies what should be measured (including timing and frequency) and that documents the changes in the plant community (compare with objectives) will be implemented.

Mechanical Treatment Methods

Plans and specifications will include items 1 through 4, above, plus—

- Types of equipment and any modifications necessary to enable the equipment to adequately complete the job.
- Dates of treatment to best effect control.
- Operating instructions (if applicable).
- · Techniques or procedures to be followed.

Chemical Treatment Methods

Plans and specifications will include items 1 through 4, above, plus—

- Acceptable chemical treatment references for containment and management or control of target species.
- Evaluation and interpretation of herbicide risks associated with the selected treatment(s).
- Acceptable dates or plant growth stage at application to best effect control and reduce reinvasion.

- Any special mitigation, timing considerations or other factors (such as soil texture and organic matter content) that must be considered to ensure the safest, most effective application of the herbicide.
- Reference to product label instructions.

On organic operations, chemical treatments applied must comply with USDA's National Organic Program regulations. Landowners should consult with their certifier for product approval before purchasing and applying any treatments.

Biological Treatment Methods

Plans and specifications will include items 1 through 4, above, plus—

- Acceptable biological treatment references for containment and management or control of target species.
- · Kind of grazing animal to be used, if applicable.
- Timing, frequency, duration, and intensity of grazing or browsing.
- Desired degree of grazing or browsing use for effective control of target species.
- Maximum allowable degree of use on desirable nontarget species.
- Special mitigation, precautions, or requirements associated with the selected treatment(s).

OPERATION AND MAINTENANCE

Operation

Brush management practices must be applied using approved materials and procedures. Operations will comply with all local, State, and Federal laws and ordinances.

Success of the practice shall be determined by evaluating post-treatment regrowth of target species after sufficient time has passed to monitor the situation and gather reliable data. Length of evaluation periods will depend on the woody species being monitored, proximity of propagules (seeds, branches, and roots) to the site, transport mode of seeds (wind or animals), and methods and materials used.

The operator will develop a safety plan for individuals exposed to chemicals, including telephone numbers and addresses of emergency treatment centers and the telephone number for the nearest poison control center. The National Pesticide Information Center (NPIC) telephone number in Corvallis, Oregon, may also be given for nonemergency information: **1-800-858-7384**, Monday to Friday, 6:30 a.m. to 4:30 p.m. Pacific Time. The national Chemical Transportation Emergency Center (CHEMTRAC) telephone number is **1-800-424-9300**.

- Follow label requirements for mixing/loading setbacks from wells, intermittent streams and rivers, natural or impounded ponds and lakes, and reservoirs.
- Post signs, according to label directions and/or Federal, State, Tribal, and local laws, around fields that have been treated. Follow restricted entry intervals.
- Dispose of herbicides and herbicide containers in accordance with label directions and adhere to Federal, State, Tribal, and local regulations.
- Read and follow label directions and maintain appropriate Material Safety Data Sheets (MSDS).
 MSDS and pesticide labels may be accessed on the Internet at: http://www.greenbook.net/.
- Calibrate application equipment according to recommendations before each seasonal use and with each major chemical and site change.
- Replace worn nozzle tips, cracked hoses, and faulty gauges on spray equipment.
- Maintain records of brush/shrub control for at least 2 years. Herbicide application records shall be in accordance with USDA Agricultural Marketing Service's Pesticide Recordkeeping Program and State-specific requirements.

Maintenance

Following initial application, some regrowth, resprouting, or reoccurrence of brush may be expected. Spot treatment of individual plants or areas needing retreatment should be completed as needed while woody vegetation is small and most vulnerable to desired treatment procedures.

Review and update the plan periodically in order to—

- Incorporate new integrated pest management technology.
- Respond to grazing management and complex plant population changes.
- Avoid the development of plant resistance to herbicide chemicals.

REFERENCES

Branson, F.A., G.F. Gifford, K.G. Renard, R.F Hadley, and E.H. Reid, ed. 1981. Rangeland Hydrology, 2nd ed., Society for Range Management, Colorado.

Heady, H.F. and D. Child, 1994. Rangeland Ecology and Management, Westview Press, Colorado.

Holechek, J.L., R.D. Pieper and C.H. Herbel. 2000. Range management principles and practices, 5th edition. Prentice Hall, New Jersey.

Krausman, P.R., ed. 1996. Rangeland Wildlife. Society for Range Management, Colorado.

Monsen, S.B., R. Stevens, and N.L. Shaw, comps. 2004. Restoring Western Ranges and Wildlands, Volume 1. Gen. Tech. Rep. RMRS-GTR-136-1, USDA, Forest Service, Fort Collins, Colorado.

United States Department of Agriculture, Natural Resources Conservation Service. 2003. National Range and Pasture Handbook. Washington, DC.

United States Department of Agriculture, Natural Resources Conservation Service. 2008. General Manual: Title 190 – Ecological Sciences: Part 404 – Pest Management. Washington, DC.

Valentine, J.R., 1989. Range Developments and Improvements, 3rd ed. Academic Press, Massachusetts.

Vavra, M., W.A. Laycock, R.D. Pieper, eds. 1994. Ecological Implications of Livestock Herbivory in the West. Society for Range Management, Colorado.

Briske, D.D. [ed]. 2011. Conservation Benefits of Rangeland Practices: Assessment, Recommendations, and Knowledge Gaps. U.S. Department of Agriculture, Natural Resources Conservation Service. 429 pages.

Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

HERBACEOUS WEED TREATMENT

CODE 315

(ac)

DEFINITION

The removal or control of herbaceous weeds including invasive, noxious, and prohibited plants.

PURPOSE

This practice is used to accomplish one or more of the following purposes:

- Enhance accessibility, quantity, and/or quality of forage and/or browse
- Restore or release native or create desired plant communities and wildlife habitats consistent with the site potential
- Protect soils and control erosion
- Reduce fine fuel loads and wildfire hazard
- Pervasive plant species are controlled to a desired level of treatment that will ultimately contribute
 to creation or maintenance of an ecological site description "steady state," addressing the need for
 forage, wildlife habitat, and/or water quality
- · Improve rangeland health

CONDITIONS WHERE PRACTICE APPLIES

On all lands except active cropland where removal, reduction, or manipulation of herbaceous vegetation is desired.

This practice does not apply to removal of herbaceous vegetation by prescribed fire (use Conservation Practice Standard (CPS) Prescribed Burning (Code 338) or removal of herbaceous vegetation to facilitate a land-use change (use CPS Land Clearing (Code 460).

CRITERIA

General Criteria Applicable to All Purposes

Herbaceous weed management will be applied in a manner to achieve the desired control of the target species and protection of desired species. This will be accomplished by mechanical, chemical, or biological methods either alone or in combination.

NRCS will not develop biological or chemical treatment recommendations except for biological control utilizing grazing animals. CPS Prescribed Grazing (Code 528) is used to ensure desired results are achieved and maintained.

NRCS may provide clients with acceptable biological and/or chemical control references.

NRCS may provide clients with current acceptable references to achieve desired management objectives.

NRCS reviews and periodically updates conservation practice standards. To obtain the current version of this standard, contact your Natural Resources Conservation Service State office or visit the Field Office Technical Guide online by going to the NRCS website at https://www.nrcs.usda.gov/ and type FOTG in the search field.

When herbicides are used, environmental hazards and site-specific application criteria listed on pesticide labels, and contained in extension service and other approved pest management references, must be followed.

Herbaceous weed treatment will include post-treatment measures as needed to achieve resource management objectives.

Livestock and people access will be controlled based on management methods applied and restrictions as listed on the chemical labels.

Manage and/or dispose of treated weed species in a manner that will prevent the spread of herbaceous weeds to new sites.

Additional Criteria to Enhance Accessibility, Quantity, and Quality of Forage and/or Browse

Herbaceous weed treatment will be applied in a manner to minimize negative impact to forage and/or other nontargeted plants. Timing and sequence of control shall be planned in coordination with specifications developed for CPSs Prescribed Grazing (Code 528) or Forage Harvest Management (Code 511).

Additional Criteria to Restore or Release Native or Create Desired Plant Communities and Wildlife Habitats Consistent with the Site Potential

Apply herbaceous weed treatment in a manner to protect the health and vigor of native or desired plant species.

Use applicable ecological site description (ESD) State and transition models or other suitable information, to develop specifications that are ecologically sound and defensible. Treatments must be congruent with dynamics of the ecological site(s) and keyed to states and plant community phases that have the potential and capability to support the desired plant community. If an ESD is not available, base specifications on the best approximation of the desired plant community composition, structure, and function.

Treatments will be conducted during periods of the year when weed species are most vulnerable and will promote restoration of the native or desired plant communities.

Apply herbaceous weed treatment in a manner that maintains or enhances important wildlife habitat requirements.

Treatments will be conducted during periods of the year that accommodate reproduction and other life cycle requirements of target wildlife and pollinator species.

Apply treatments that maintain or enhance plant community composition and structure to meet the requirements of target wildlife species.

Additional Criteria to Protect Soils and Control Erosion

Apply herbaceous weed treatment to minimize soil disturbance and soil erosion.

Additional treatment will be applied to protect soils and prevent erosion.

Additional Criteria to Reduce Fine Fuel Loads and Wildfire Hazard

Treat weed species in a manner that creates a native or desired plant community which reduces the potential for accumulating excessive fuel loads and increased wildfire hazards.

Apply treatment methods in a manner that minimize the potential for unintended impacts to air resources (e.g., smoke, chemical drift, etc.).

Additional Criteria to Control Pervasive Plant Species to a Desired Level of Treatment

Additional treatments are planned and will be applied to achieve effective control of pervasive plant species through reapplication.

Additional Criteria to Improve Rangeland Health

Apply herbaceous weed treatment in a manner to enhance the health and vigor of native or desired plant species.

Complete rangeland health assessment based on the applicable "Rangeland Health Reference Worksheet" from the appropriate ecological site description(s). Identify causes of invasion, contributing processes (i.e., disturbance, dispersal, reproduction, resource acquisition, environment, life strategies, stress, interference) and associated ecological processes that are in disrepair. Appropriate tools and strategies must be based on process-based principles.

Treatments will be conducted during periods of the year when weed species are most vulnerable and will promote restoration of the native or desired plant communities.

Design and execute a plan using adaptive management which is the feedback mechanism for adjusting, as knowledge is gained from earlier management applications.

CONSIDERATIONS

Consider using CPS Integrated Pest Management (Code 595) in support of herbaceous weed control and weed management. Consider soil erosion potential and difficulty of vegetation establishment when choosing a method of control that causes soil disturbance.

Consider the appropriate time period for treatment. Some herbaceous weed management activities can be effective when applied within a single year; others may require multiple years of treatment(s) to achieve desired objectives.

Consider impacts to wildlife species, in general, treatments that create a mosaic pattern may be the most desirable.

Consider impacts to wildlife food supplies, space, and cover availability when planning the method and amount of herbaceous weed management.

State-issued licenses may be required when using chemical pesticide treatments.

For air quality purposes, consider using chemical methods of herbaceous weed management that minimize chemical drift and excessive chemical usage and consider mechanical methods of herbaceous weed management that minimize the entrainment of particulate matter.

Adjacent land uses must be considered before chemicals are used.

PLANS AND SPECIFICATIONS

Prepare plans and specifications for each field or treatment unit according to the criteria included in this standard. At a minimum, a herbaceous weed management practice plan shall include—

- 1. Goals and objectives statement.
- 2. Plan map and soil map for the site.
- 3. Pretreatment cover or density of the target plant(s) and the planned post-treatment cover or density.
- 4. Maps, drawings, and/or narratives detailing or identifying areas to be treated, pattern of treatment (if applicable), and areas that will not be disturbed.
- 5. A monitoring plan that identifies what shall be measured (including timing and frequency) and the changes in the plant community (compare with objectives) that will be achieved.

Mechanical Treatment Methods

Plans and specifications will include items 1 through 5 above, plus the following:

- · Type of equipment to use for management.
- · Dates of treatment for effective management.
- Operating instructions (if applicable).
- Techniques and procedures to be followed.

For Chemical Treatment Methods

Plans and specifications will include items 1 through 5, above, plus the following:

- Acceptable chemical treatment references for containment and management of target species.
- Documented techniques to be used, planned dates and rates of application.
- Evaluation and interpretation of herbicide risks associated with the selected treatment(s) using WIN- PST or other approved tools.
- Any special mitigation, timing considerations or other factors (such as soil texture and organic matter content) that must be considered to ensure the safest, most effective application of the herbicide.
- Reference to product label instructions.

On organic operations, chemical treatments applied must comply with USDA's National Organic Program regulations. Landowners should consult with their certifier for product approval before purchasing and applying any treatments.

For Biological Treatment Methods

Plans and specifications will include items 1 through 5, above, plus the following:

- Acceptable biological treatment references for the selected biological agent used to contain and manage the target species.
- Document release date, kind, and number of agents.
- · Timing, frequency, duration, and intensity of grazing or browsing.
- Desired degree of grazing or browsing use for effective management of target species.
- Maximum allowable degree of use on desirable nontarget species.
- Special mitigation, precautions, or requirements associated with the selected treatment(s)

OPERATION AND MAINTENANCE

Operation

Herbaceous weed management practices shall be applied using approved materials and procedures. Operations will comply with all local, State, and Federal laws and ordinances.

The operator will develop a safety plan for individuals exposed to chemicals, including telephone numbers and addresses of emergency treatment centers and the telephone number for the nearest poison control center.

The National Pesticide Information Center (NPIC) telephone number in Corvallis, Oregon, may also be given for nonemergency information: 1-800-858-7384, Monday to Friday, 6:30 a.m. to 4:30 p.m., Pacific Time. The national Chemical Transportation Emergency Center (CHEMTRAC) telephone number is: 1-800-424-9300.

· Follow label requirements for mixing/loading setbacks from wells, intermittent streams and rivers,

- natural or impounded ponds and lakes, and reservoirs.
- Post signs, according to label directions and/or Federal, State, Tribal, and local laws, around fields that have been treated. Follow restricted entry intervals.
- Dispose of herbicide and herbicide containers in accordance with label directions and adhere to Federal, State, Tribal, and local regulations.
- Read and follow label directions and maintain appropriate Material Safety Data Sheets (MSDS).
 MSDS and herbicide labels may be accessed on the Internet at: http://www.greenbook.net/.
- Calibrate application equipment according to recommendations before each seasonal use and with each major chemical and site change.
- Replace worn nozzle tips, cracked hoses, and faulty gauges on spray equipment.
- Maintain records of plant management for at least 2 years. Herbicide application records shall be in accordance with USDA Agricultural Marketing Service's Pesticide Recordkeeping Program and State-specific requirements.

Maintenance

Success of the practice shall be determined by evaluating regrowth or reoccurrence of target species after sufficient time has passed to monitor the situation and gather reliable data. Length of evaluation periods will depend on the herbaceous weeds species being monitored, proximity of propagules (seeds, plant materials and roots) to the site, transport mode of seeds (wind or animals) and methods and materials used.

Following initial application, some regrowth, resprouting, or reoccurrence of herbaceous weeds may be expected. Spot treatment of individual plants or areas needing retreatment should be completed as needed when weed vegetation is most vulnerable to desired treatment procedures.

Review and update the plan periodically to: incorporate new IPM technology, respond to grazing management and complex weed population changes, and avoid the development of weed resistance to herbicide chemicals.

REFERENCES

Alex, J.F. and C.M. Switer. 1982. Ontario weeds. Publ. 505, University of Guelph – Ontario Agricultural College, Guelph, Ontario, Canada.

American Sheep Industry, A. Peischel and D.D. Henry, Jr., 2006. Targeted Grazing: a Natural Approach to Vegetation Management and Landscape Enhancement.

Ciba-Geigy Corp. Plants that poison livestock: Information chart.

Cornell University Department of Animal Science. Plants Poisonous to Livestock and Other Animals. [Online]. Available at: http://www.ansci.cornell.edu/plants/.

DeWolf , G. and M. Hondalus. 1988. Common Massachusetts plants poisonous to horses. University of Massachusetts Cooperative Extension Service, Amherst, Massachusetts.

Ensminger, M.E. 1992. The stockman's handbook. (7th Ed.) The Interstate Printers and Publishers, Inc. Danville, Illinois.

Evers, R.A. and R.P. Link. 1972. Poison plants of the Midwest and their effects on livestock. Special Publication 24, University of Illinois – College of Agriculture, Urbana, Illinois.

Hamilton, G.W. and J.R. Mitchell. 2001. [Online] Poisonous plants in pastures. Univ. of New Hampshire Coop. Ext. Serv., Durham, New Hampshire. Available at http://extension.unh.edu/resources/representation/Resource000623_Rep645.pdf. (Accessed 15 October 2008).

Hill, R.J. and D. Folland. 1986. Poisonous plants of Pennsylvania. Pennsylvania Department of Agriculture, Harrisburg, Pennsylvania.

Peachey, E., A. Hulting, T. Miller, D. Lyon, D. Morishita and P. Hutchinson. Pacific Northwest Weed Management Handbook. 2016. Oregon State University, Corvallis. Oregon.

Radosevich, S.R., J.S. Holt, and C.M. Ghersa. 2007. Ecology of Weeds and Invasive Plants – Relationship to Agriculture and Natural Resource Management. Third Edition. Wiley-Interscience. A. John Wiley & Sons, Inc. 454pp.

Reed, C.F. 1970. Selected weeds of the United States. Agriculture Handbook No. 366, U.S. Government Printing Office, Washington, D.C.

Sheley, R., J. James, B. Smith, and E. Vasquez. 2010. Applying Ecologically Based Invasive-Plant Management. Rangeland Ecology & Management, 63(6): 605-613.

USDA-ARS. 2006. Bulletin 415 - Plants poisonous to livestock in the Western states. [Online]. Available at http://www.ars.usda.gov/Services/docs.htm?docid=12140 (Updated 08 February 2006, accessed 15 October 2008).

Whitson, T.D., L.C. Burrill, S.A. Dewey, D.W. Cudney, B.E. Nelson, R.D. Lee, and R. Parker. 1992. Weeds of the West. Western Society of Weed Science in cooperation with the Western United States Land Grant Universities Cooperative Extension Services and the University of Wyoming. 630pp.

Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

CONSERVATION COVER

CODE 327

(ac)

DEFINITION

Establishing and maintaining permanent vegetative cover.

PURPOSE

This practice is used to accomplish one or more of the following purposes:

- · Reduce sheet, rill, and wind erosion and sedimentation
- Reduce ground and surface water quality degradation by nutrients and surface water quality degradation by sediment
- Reduce emissions of particulate matter (PM), PM precursors, and greenhouse gases
- Enhance wildlife, pollinator and beneficial organism habitat

CONDITIONS WHERE PRACTICE APPLIES

This practice applies on all lands needing permanent herbaceous vegetative cover. This practice does not apply to plantings for forage production or to critical area plantings. This practice can be applied on a portion of the field.

CRITERIA

General Criteria Applicable to All Purposes

Select species that are adapted to the soil, ecological sites, and climatic conditions that are suitable for the planned purpose and site conditions. Periodic removal of some products such as high value trees, medicinal herbs, nuts, and fruits is permitted provided the conservation purpose is not compromised by the loss of vegetation or harvesting disturbance.

Inoculate legumes at planting time.

Choose seeding rates and planting methods that will be adequate to accomplish the planned purpose. Planting dates, planting methods and care in handling and planting of the seed or planting stock shall ensure that planted materials have an acceptable rate of survival.

Prepare the site by establishing a consistent seeding depth. Eliminate weeds that would impede the establishment and growth of selected species. Use Herbaceous Weed Treatment (315) to control weeds and competing herbaceous vegetation. Use Brush Management (314) to remove non-target brush that will impede the establishment and growth of selected species. Use Cover Crop (340) to suppress weeds, control soil erosion or improve soil organic matter during site preparation.

Base the timing and equipment selection on the site and soil conditions.

NRCS reviews and periodically updates conservation practice standards. To obtain the current version of this standard, contact your Natural Resources Conservation Service State office or visit the Field Office Technical Guide online by going to the NRCS website at https://www.nrcs.usda.gov/ and type FOTG in the search field.

NRCS, NY

July 2019

Apply nutrients as needed to ensure vegetation establishment and planned growth based on soil test. Pollinator, beneficial organism and native grass plantings generally do not require lime or fertilizer. Do not apply lime or fertilizer to pollinator, beneficial organism or native grass plantings unless a soil test indicates pH is too low for establishment and productive growth, and the appropriate NRCS specialist has been consulted.

For slow growing plant species, including native grasses and forbs, control competing vegetation during the establishment period.

Additional Criteria to Reduce Sheet, Rill, and Wind Erosion and Sedimentation

Determine and maintain the amount of plant biomass and cover needed to reduce wind and water erosion to the planned soil loss objective by using the current approved wind and/or water erosion prediction technology.

<u>Additional Criteria to Reduce Emissions of Particulate Matter (PM), PM Precursors, and Greenhouse Gases</u>

In perennial crop systems such as orchards, vineyards, berries and nursery stock, establish vegetation to provide full ground coverage in the alleyway during mowing and harvest operations to minimize generation of particulate matter.

Additional Criteria to Enhance Wildlife, Pollinator and Beneficial Organism Habitat

Plant a diverse mixture of grass and forb species to promote bio-diversity and meet the needs of the targeted species using approved habitat appraisal guides, evaluation tools, and appraisal worksheets for the respective state.

For pollinator and beneficial organism habitat plantings, ensure several species of flowering plants are established for each bloom period; spring, summer and fall.

For beneficial organism habitat optimal function, locate plantings where beneficial insects can access targeted crops.

Locate habitat plantings to avoid exposure from all types of pesticides and drift that could harm wildlife, pollinators, and other beneficial organisms. Use Integrated Pest Management (595) to prevent, avoid and/or mitigate potential exposure to habitat protect plantings from pesticides and drift.

Follow a NRCS NY approved reference when establishing pollinator habitat.

Additional Criteria to Improve Soil Health

To maintain or improve soil organic matter, select plants that will produce high volumes of organic material. The amount of biomass needed will be determined using the current soil conditioning index procedure.

CONSIDERATIONS

This practice may be used to promote the conservation of wildlife species in general, including threatened and endangered species.

Certified seed and planting stock that is adapted to the site should be used when it is available.

On sites where annual grasses are an expected weed problem, it may be necessary to postpone nitrogen fertilizer application until the planted species are well established.

Where applicable this practice may be used to conserve and stabilize archaeological and historic sites.

Consider rotating management and maintenance activities (e.g. mow only one-fourth or one-third of the area each year) throughout the managed area to maximize spatial and temporal diversity.

Use Early Successional Habitat Development/Management (647) or Prescribed Burning (338) to manage established conservation cover and associated habitat.

Where wildlife management is an objective, the food and cover value of the planting can be enhanced by using a habitat evaluation procedure to aid in selecting plant species and by providing or managing for other habitat requirements necessary to achieve the objective. Encouraging plant species diversity and establishing plantings that result in multiple structural levels of vegetation within the conservation cover will maximize wildlife use.

To provide habitat for natural enemies of crop pests, select a mix of plant species that provide year-round habitat and food (accessible pollen or nectar) for the desired beneficial species. Consider habitat requirements of predatory and parasitic insects, spiders, insectivorous birds and bats, raptors, and terrestrial rodent predators. Consult Land Grant University Integrated Pest Management recommendations for beneficial habitat plantings to manage the target pest species.

Where practical, use native species that are appropriate for the identified resource concern and management objective. Consider trying to re-establish the native plant community for the site.

If a native cover (other than what was planted) establishes, and this cover meets the intended purpose and the landowner's objectives, the cover should be considered adequate.

During vegetation establishment, natural mulches, such as wood products or hay, can be used to conserve soil moisture, support beneficial soil life, and suppress competing vegetation. Use Mulch (484).

PLANS AND SPECIFICATIONS

Prepare plans and specifications for the site to include, but are not limited to:

- · recommended species,
- · seeding rates and dates,
- establishment procedures,
- · management actions needed to insure and adequate stand

Specifications and operation and maintenance shall be recorded using approved Implementation Requirement document.

OPERATION AND MAINTENANCE

Mowing and harvest operations in a perennial crop system such as orchards, vineyards, berries, and nursery stock shall be done in a manner which minimizes the generation of particulate matter.

If wildlife habitat enhancement is a purpose, maintenance practices and activities shall not disturb cover during the reproductive period for the desired species. Exceptions should be considered for periodic burning or mowing when necessary to maintain the health of the plant community.

Control noxious weeds and other invasive species.

To benefit insect food sources for grassland nesting birds, spraying or other control of noxious weeds shall be done on a "spot" basis to protect forbs and legumes that benefit native pollinators and other wildlife.

Re-vegetate bare spots.

REFERENCES

Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool and D.C. Yoder. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE), Agricultural Handbook Number 703.

Revised Universal Soil Loss Equation Version 2 (RUSLE2) website: http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/

The Xerces Society for Invertebrate Conservation and USDA, NRCS. 2018. Planting for Pollinators and Beneficial Insects Wildflower Habitat Establishment Guide: New York. 21pp.

USDA, NRCS and The Xerces Society for Invertebrate Conservation. 2014. Preventing or mitigating potential negative impacts of pesticides on pollinators using IPM and other conservation practices. Nat. Agron. Tech Note 9. Washington, DC. http://directives.sc.egov.usda.gov/

USDA, NRCS. 2012. A guide to conservation plantings on critical areas in the northeast. USDA, NRCS, Big Flats Plant Materials Center, Corning NY (http://plant-materials.nrcs.usda.gov/nypmc/)

Wind Erosion Prediction System (WEPS) website: http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/

Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

WILDLIFE HABITAT PLANTING

CODE 420

(ac)

DEFINITION

Establishing wildlife habitat by planting herbaceous vegetation or shrubs.

PURPOSE

This practice is used to accomplish one or more of the following purposes:

- Improve degraded wildlife habitat for the target wildlife species or guild
- · Establish wildlife habitat that resembles the historic, desired, and reference native plant community

CONDITIONS WHERE PRACTICE APPLIES

This practice applies to all lands where inadequate wildlife habitat is identified as a primary resource concern and a plant community inventory or wildlife habitat evaluation indicates a benefit in altering the current vegetative conditions (species diversity, richness, structure, and pattern) by establishing herbaceous plants or shrubs. The use of annuals that persist over the life of the practice, and annuals that serve as a nurse crop to support the establishment of the persistent vegetative species are appropriate under this conservation practice.

This practice does not apply to—

- Planting of trees. For such plantings, use NRCS Conservation Practice Standard (CPS)
 Tree/Shrub Establishment (Code 612).
- Wildlife plantings requiring repeated cultivation and planting. For such plantings, use CPSs Wetland Wildlife Habitat Management (Code 644), or Upland Wildlife Habitat Management (Code 645).
- Plantings requiring restoration of abiotic conditions, and plantings with the objective of restoring a
 rare or declining natural community. For such projects, use CPS Restoration of Rare or Declining
 Natural Communities (Code 643).
- Plantings with a principle goal of providing forage for livestock or other domesticated animals (e.g., domesticated elk, bison, and deer). For such plantings, use CPSs Forage and Biomass Planting (Code 512) or Range Planting (Code 550) criteria.
- Plantings where erosion control or water quality is a primary resource concern. For such plantings, use CPSs Conservation Cover (Code 327), Windbreak/Shelterbelt Establishment (Code 380), Critical Area Planting (Code 342), or Filter Strip (Code 393).
- Treatment of noxious, invasive and pervasive woody or herbaceous vegetation, when aggressive efforts are required and where success monitoring of treatment efforts is necessary. Use CPSs Brush Management (Code 314) and Herbaceous Weed Treatment (Code 315) when the resource concern is a degraded plant condition due to very difficult to control noxious or invasive species. Following application of CPS Brush Management, and as needed, CPS Herbaceous Weed

NRCS reviews and periodically updates conservation practice standards. To obtain the current version of this standard, contact your Natural Resources Conservation Service State office or visit the Field Office Technical Guide online by going to the NRCS website at https://www.nrcs.usda.gov/ and type FOTG in the search field.

NRCS. NY

Treatment (Code 315), the application of CPS Wildlife Habitat Planting (Code 420) may be determined to be needed to fully address the habitat-limiting factors.

CRITERIA

General Criteria Applicable to All Purposes

Identify the target wildlife species or guild and implement all vegetative establishment measures needed to meet minimum NRCS planning criteria of "50 percent of the habitat potential for the species of concern" (USDA NRCS 2003) as identified in a State-approved habitat evaluation protocol (e.g., Wildlife Habitat Evaluation Guide). In most habitat evaluation protocols this is reflected by a score of at least 0.5.

Identify the target habitat conditions to be created with the establishment of selected plant materials. The targeted habitat conditions will include a description of plant species richness, diversity, pattern, and structure. The target conditions include species that do not require annual cultivation and annual planting.

Inventory or assess the adjacent plant communities to determine sensitivity to potential risk of introducing unwanted species (noxious, invasive, and aggressive natives) into sensitive adjacent habitats. This assessment includes risks associated with ingress and egress of people and equipment, and the introduction of new plant materials. Implement actions necessary to address identified risks.

Design wildlife plantings with respect to season of use, life history, home range, condition of adjacent habitats, and landscape context.

Evaluate the location and value of the habitat for the target species or guild, versus risks to nontarget species (e.g., predation of ground-nesting birds in linear and edge-of-field plantings, insecticide impacts on invertebrates, and potential of the new habitat to encourage use by unwanted wildlife). Adjust the species, location, or design accordingly.

Wildlife plantings can create safety concerns for humans and wildlife when such habitat is located near transportation and utility infrastructure. Locate plantings away from transportation and utility infrastructure, when safety hazards to wildlife or humans are identified.

Use only species that are noninvasive and adapted to the site.

Native flora often provide greater ecological benefits relative to introduced species. When suitable, practicable, and available use native plant materials.

Seeding rates will be calculated on a pure life seed (PLS) basis.

Plant materials will meet State quality standards.

If seeds are harvested locally from native sites, test seed for purity and germination in order to determine PLS and for weed content, including State-listed noxious weeds. Locally harvested plants (plugs or shrub seedlings) must be harvested from sites without noxious or invasive species. If such sites are not available, then choose the most appropriate commercially available seed or plant materials to meet the intended habitat requirements..

For wildlife plantings (e.g., small pollinator plantings) on native rangeland sites, the species of grass in the mix must be endemic to the site, as determined by ecological site descriptions (ESD) or other technical resources. If endemic native grass seed is not commercially available or suitable, refer to NRCS State specifications for alternatives. The percent grass in the mix will follow the State standard and specifications for this practice.

Specify the composition, rates, planting depth, and proper handling of plant materials to create target habitat conditions within the practice life span.

Implement all necessary vegetative establishment protocols such as site preparation and weed and pest control (Use CPSs Brush Management (Code 314) and Herbaceous Weed Treatment (Code 315)), planting rates, planting dates, planting methods, cold storage, legume inoculation, and plant material care. Implement post-planting management actions (e.g., mowing annual weeds during establishment) needed to maximize the success of the planting. Follow the best available local, State, or regional level technical information, such as NRCS Plant Materials Center guidelines.

Apply nutrients and other soil amendments based on a soil test and only as needed for establishment.

During the establishment period, protect plantings from identified risks such as grazing, fire, excessive weed competition, and other pests. Use CPSs Access Control (Code 472), Herbaceous Weed Treatment (Code 315) and Integrated Pest Management (Code 595) as applicable.

During the establishment period, inspect the planting site for noxious or invasive plants. Implement appropriate control efforts using CPSs Brush Management (Code 314) and Herbaceous Weed Treatment (Code 315).

Additional Criteria for Establishing Habitat that Resembles the Historic/Desired/Reference Native Plant Community

Native wildlife are adapted to native flora. Most native wildlife respond favorably to creating habitat conditions that closely resemble those conditions with which the wildlife species evolved. These historic conditions (commonly referred to as desired conditions, pre-European development conditions, or reference community conditions) include different disturbance regimes. Implement the following when the wildlife habitat establishment objective is to manage for native wildlife by establishing vegetative conditions that resemble the historic habitat conditions.

- Vegetative establishment efforts shall replicate native plant species richness within the targeted successional stage, as provided by an NRCS-approved data source (e.g., ESD, Natural Heritage Program, and NRCS reference sites).
- If available, maintain the integrity of the local genotype by using source-identified plant materials or local plant materials (e.g., use of local seedbank or harvest of plant materials from local native areas).
- Establish vegetation to create the targeted mosaic pattern (uniform, random, or clumped distribution).
- Following planting, utilize supporting conservation practices necessary to restore or mimic the natural disturbance regime identified and necessary to reach target conditions.

CONSIDERATIONS

Many grassland habitats historically lacked a woody component. Adding shrubs into these habitats can be detrimental to many native wildlife species.

Meeting the target conditions of a seral or late successional plant community on disturbed sites may require a staged approach to establishment of the target plant community. For example, a disturbed site may require 1–2 years of plantings of annuals or crops using standards CPSs Upland Wildlife Habitat Management (Code 645), Conservation Crop Rotation (Code 328), or Cover Crop (Code 340) to build soil organic matter and control noxious grasses.

On native rangeland and native grassland, use of other standards (such as CPSs Prescribed Grazing (Code 528) and Prescribed Burning (Code 338)) may provide the same habitat functions and values necessary for the identified target species or guild but with less site disturbance and with less risk of introducing invasive species.

After the site and soils are suitable, the seral or late successional plant species are established.

Land use and habitat in the associated landscape may influence the ability to achieve wildlife population and management goals. Establish project outcome goals with consideration of adjacent habitats.

If the site was recently used for cropland, hayland, or pastureland, test soils on the establishment site and also on a site with similar soils that have not been fertilized in the past 10 years. If the nitrogen level exceeds natural levels by more than 25 percent, implement nitrogen sequestration techniques, such as planting noninvasive annual grasses (sorghum) and harvesting as hay.

Residual pesticides, herbicides, and nutrients from previous land uses can negatively affect the soil microbiology and establishment success. Plant scavenging cover crops (CPS Cover Crop – Code 340) or relocate planting, as appropriate.

Plantings immediately adjacent to lands treated with pesticides provide risks to invertebrates. Use NRCS CPS Integrated Pest Management (Code 595), technical notes and other resources to implement techniques to mitigate for pesticide risks.

Production agriculture, urban development, and energy development can reduce the availability and quality of habitat to resident and migratory wildlife. Increasing the quality of habitat to levels in excess of the minimum NRCS planning criteria threshold of 50 percent (USDA NRCS 2003) of the habitat potential can maximize local wildlife populations and help offset habitat losses in the surrounding agricultural landscape.

PLANS AND SPECIFICATIONS

Develop plans and specifications for each treatment unit according to the criteria. Include in the plan, a detailed implementation schedule with success criteria that covers the entire practice life-span.

The plan will—

- Include the target wildlife species or guild.
- Describe the important target biotic conditions such as species composition, age, structure, or density.
- Document baseline conditions and planned conditions using an approved wildlife habitat evaluation procedure.
- Identify control treatments for noxious, invasive, undesirable, and competing plant and animal species necessary to restore the site to the target conditions.
- As applicable, describe actions necessary to minimize impacts to nontarget wildlife species.
- Include a practice implementation schedule. The schedule will include activities and dates critical to practice implementation and all supporting standards (e.g., CPSs Herbaceous Weed Treatment (Code 315), Brush Management (Code 314), Fence (Code 382), and Stream Crossing (Code 578)).
- · Describe site/seedbed preparation methods.
- Provide fertilizer application methods and rates (if applicable).
- Provide planting methods and rates.
- Provide for supplemental water (if applicable).
- Provide for protection of plantings (if applicable).
- Provide a success criteria (target conditions) for the planting, including the target conditions and timeframes.

OPERATION AND MAINTENANCE

An operation and maintenance (O&M) plan will include all activities required to maintain the improved habitat conditions, including—

Postestablishment assessment process.

- O&M schedule with consideration for adaptive management in the O&M plan.
- Identifying periods of the day and season to avoid disturbance with O&M activities.

REFERENCES

USDA NRCS. 2003. National Biology Manual, Section 511.04 (c), Resource management systems and quality criteria.

Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

EARLY SUCCESSIONAL HABITAT DEVELOPMENT/ MANAGEMENT

CODE 647

(ac)

DEFINITION

Manage plant succession to develop and maintain early successional habitat to benefit desired wildlife and/or natural communities.

PURPOSE

This practice is used to accomplish the following purpose:

· To provide habitat for species requiring early successional habitat for all or part of their life cycle

CONDITIONS WHERE PRACTICE APPLIES

On all lands that are suitable for the kinds of desired wildlife and plant species.

CRITERIA

General Criteria Applicable to All Purposes

Management will be designed to achieve the desired plant community structure (e.g., density, vertical and horizontal cover) and plant species diversity.

Where planting is needed, regionally adapted plant materials will be used.

Site preparation, planting dates, and planting methods shall optimize survival.

Planting of noxious weeds and invasive species is prohibited.

Measures must be provided to control noxious weeds and invasive species.

If using chemical methods of control, Pesticide Screening Tool (WinPST) shall be used to assess risks, and appropriate mitigation to reduce known risks shall be employed.

To benefit insect food sources for grassland nesting birds, spraying or other control of noxious weeds will be in a targeted manner through the use of spot spraying, mechanical or hand wick applicators, or other approved methods to protect grasses, forbs and legumes that benefit native pollinators and other wildlife.

Management will be timed to minimize negative impacts to wildlife. Disturbance to habitat shall be restricted during critical periods (e.g., wildlife nesting, brood rearing, fawning or calving seasons).

Minimize soil disturbance in natural communities where soil integrity is essential, on steep slopes, on highly erodible soil, and where establishment of invasive species is likely.

When grazing is used as a management tool, a prescribed grazing plan developed to specifically meet the intent and objective(s) of this practice standard is required.

NRCS reviews and periodically updates conservation practice standards. To obtain the current version of this standard, contact your Natural Resources Conservation Service State office or visit the Field Office Technical Guide online by going to the NRCS website at https://www.nrcs.usda.gov/ and type FOTG in the search field.

USDA is an equal opportunity provider, employer, and lender.

CONSIDERATIONS

General Considerations

Vegetative manipulation to maximize plant and animal diversity can be accomplished by disturbance practices that include, but are not limited to: selected herbicide techniques, brush management prescribed burning, light disking, mowing, prescribed grazing, or a combination of these.

This practice should be applied periodically to maintain the desired early successional plant community and rotated throughout the managed area.

When selecting plants and designing management for this practice, consider the needs of pollinators and incorporate to the maximum extent practicable.

Wildlife habitat purposes often require lighter seeding rates than specified to prevent soil erosion.

Design and install the treatment layout to facilitate:

- Operation of machinery, and
- Use of natural firebreaks or development and maintenance of bare soil firebreaks when Prescribed Burning.

When Prescribed Grazing, consider setting aside a paddock near the center of the pasture and defer grazing until after the critical nest and brood rearing period. Many grassland birds require more than 40 days to fledge their young.

When selecting plants and designing management for this practice, consider the needs of pollinators and incorporate to the maximum extent practicable.

PLANS AND SPECIFICATIONS

Written specifications, application schedules and maps shall be prepared for each site. Specifications shall identify the amounts and kinds of habitat elements, locations and management actions necessary to achieve management objectives.

Specifications shall be transmitted to clients using approved specification sheets, job sheets, and customized practice narratives or by other written documentation approved by NRCS.

OPERATION AND MAINTENANCE

The following actions shall be carried out to insure that this practice functions as intended throughout its expected life. These actions include normal repetitive activities in the application and use of the practice (operation), and repair and upkeep of the practice (maintenance).

Occasional disturbance may be incorporated into the management plan to ensure the intended purpose of this practice.

Any use of fertilizers, pesticides and other chemicals shall not compromise the intended purpose.

REFERENCES

Best, L. B., K. E. Freemark, J.J.Dinsmore and M. Camp. 1995. A review and synthesis of bird habitat use in agricultural landscapes of Iowa. Am. Midl.Nat. 134:1-29.

Burger, L.W. 2002. Quail management: Issues, concerns, and solutions for public and private lands-a southeastern perspective. Proceedings of the National Quail Symposium 5.

DeGraaf, R.M., M. Yamasaki. 2003. Options for managing early-successional forest and shrubland bird habitats in the northeastern United States. Forest Ecology and Management 185: 179-191.

Hamrick, R.G., and J.P. Carroll. 2002. Response of northern bobwhite populations to agricultural habitat management in south Georgia. Proceedings of the 9th Annual Conference of the Wildlife Society 9:129.

Oehler, J.D. et al. 2006. Managing grasslands, shrublands, and young forest habitats for wildlife – a guide for the northeast. Northeast Upland Habitat Technical Committee, Massachusetts Division of Fish and Wildlife. 104pp.

Roseberry, J.L. 1992. Cooperative upland research. Effects of emerging farm practices and practices on habitat quality for upland game: Upland game habitat associations. Illinois Department of Conservation

Sepik, G. F., R. B. Owen, Jr., and M. W. Coulter. 1981. A landowner's guide to woodcock management in the Northeast. Maine Agricultural Experiment Station, Miscellaneous Report 253.23 pp.

Shepherd, M. D., S. L. Buchmann, M. Vaughan, S. H. Black. 2003. *Pollinator Conservation Handbook: A Guide to Understanding, Protecting, and Providing Habitat for Native Pollinator Insects*, 145 pp. Portland: The Xerces Society.

National Sustainable Agriculture Information Service for information on native bees in agricultural settings, http://www.attra.ncat.org.

Xerces Society for Invertebrate Conservation has information on Pollinator habitat, http://www.xerces.org.

Appendix 3: NY State Freeze Frost Occurrence Data

Freeze / Frost Occurrence Data

All probabilities in whole percent. See notes for probability level description.

- Indicates the probability of occurrence of threshold temperature is less than indicated probability.

State And Station	T h r		Spring (Date)			Fall (Date)			ree ays)	ProbLae	
Name	s h o	Probab	oility Le	vel (1)	Probab	oility Le	vel (2)	Probak	oility Le	vel (3)	b v i e I I
New York	I d (F)	90	50	10	10	50	90	10	50	90	i (4) t y
ADDISON	36	May07	May31	Jun24	Sep04	Sep18	Oct03	140	110	79	53
	32	Apr30	May18	Jun04	Sep16	Sep30	Oct15	157	135	113	46
	28	Apr17	May02	May17	Sep30	Oct16	Nov01	185	166	147	37
ALBANY INTL AP	36	May01	May17	Jun01	Sep11	Sep22	Oct04	145	128	112	47
	32	Apr19	May02	May15	Sep23	Oct03	Oct13	168	153	139	40
	28	Apr07	Apr19	May01	Oct02	Oct18	Nov03	201	181	161	31
ALBION 2 NE	36	May02	May17	Jun02	Sep20	Oct01	Oct13	155	136	117	45
	32	Apr22	May02	May11	Sep27	Oct12	Oct26	181	163	144	37
	28	Apr08	Apr20	May01	Oct14	Oct29	Nov14	214	192	170	28
ALCOVE DAM	36	May08	May27	Jun14	Aug29	Sep16	Oct03	139	111	83	52
	32	Apr25	May12	May28	Sep10	Sep27	Oct14	165	137	109	45
	28	Apr16	Apr28	May11	Sep27	Oct11	Oct25	183	165	147	36
ALFRED	36	May21	Jun05	Jun20	Aug19	Sep08	Sep28	120	94	69	54
	32	May08	May23	Jun07	Sep07	Sep21	Oct05	142	121	99	46
	28	Apr26	May10	May25	Sep16	Oct03	Oct20	168	145	122	38
ALLEGANY STATE PARK	36	May17	Jun03	Jun21	Aug28	Sep14	Oct01	126	102	77	55
	32	May06	May25	Jun13	Sep09	Sep24	Oct09	145	122	99	48
	28	Apr21	May08	May26	Sep29	Oct14	Oct28	180	158	135	37
ANGELICA	36	May24	Jun09	Jun26	Aug21	Sep08	Sep25	113	89	66	54
	32	May10	May28	Jun14	Sep10	Sep22	Oct04	138	117	96	47
	28	Apr28	May12	May26	Sep18	Oct06	Oct24	170	146	123	37
AUBURN	36	May08	May22	Jun04	Sep13	Sep27	Oct10	148	127	107	48
	32	Apr26	May10	May25	Sep21	Oct07	Oct24	175	150	124	41
	28	Apr11	Apr26	May10	Oct07	Oct23	Nov08	202	180	158	31
AURORA RESEARCH FARM	36	Apr30	May17	Jun02	Sep18	Oct01	Oct15	161	137	113	46
	32	Apr22	May02	May12	Sep28	Oct15	Oct31	184	165	146	38
	28	Apr08	Apr20	May01	Oct09	Oct28	Nov16	219	190	162	30
AVON	36	May03	May18	Jun01	Sep20	Sep30	Oct10	152	135	117	48
	32	Apr23	May04	May15	Sep27	Oct10	Oct22	173	158	143	40
	28	Apr12	Apr22	May02	Oct10	Oct25	Nov10	204	186	167	31
BATAVIA	36	May01	May17	Jun02	Sep14	Sep26	Oct08	151	132	112	46
	32	Apr21	May04	May17	Sep25	Oct10	Oct25	178	159	139	38
	28	Apr10	Apr19	Apr28	Oct11	Oct26	Nov09	208	189	171	30
ватн	36	May15	May31	Jun15	Sep01	Sep16	Sep30	126	107	88	54
	32	May04	May17	May30	Sep11	Sep27	Oct12	152	132	111	46
	28	Apr19	May02	May16	Sep20	Oct08	Oct25	179	157	136	36
BIG MOOSE 3 SE	36	May24	Jun13	Jul03	Aug09	Aug29	Sep18	109	76	43	63
	32	May18	May30	Jun11	Aug30	Sep16	Oct03	131	108	85	57
	28	Apr25	May12	May29	Sep15	Sep25	Oct05	159	135	112	46
BINGHAMTON BROOME CO AP	36	Apr28	May17	Jun04	Sep14	Sep28	Oct12	156	133	111	47
	32	Apr20	May01	May12	Sep24	Oct09	Oct24	177	160	143	39
	28	Apr09	Apr19	Apr29	Oct02	Oct21	Nov08	206	184	162	31

BOONVILLE 2 SSW	36	May09	May30	Jun21	Sep09	Sep20	Sep30	136	112	87	53
BOOMMELL 2 GOW	32	Apr28	May15	Jun01	Sep19	Oct02	Oct14	162	139	116	46
	28	Apr17	Apr28	May08	Sep23	Oct09	Oct24	183	163	143	38
BRIDGEHAMPTON	36	Apr23	May07	May21	Sep29	Oct11	Oct23	175	156	137	38
	32	Apr11	Apr25	May09	Oct04	Oct19	Nov03	201	176	152	29
	28	Mar25	Apr07	Apr21	Oct19	Nov03	Nov19	231	210	188	21
BUFFALO NIAGARA INTL	36	Apr26	May09	May22	Sep22	Oct05	Oct18	167	148	129	44
	32	Apr12	Apr24	May06	Oct05	Oct19	Nov02	196	177	158	35
	28	Apr03	Apr14	Apr24	Oct19	Nov02	Nov16	221	202	182	27
CAMDEN 2 NW	36	May18	Jun06	Jun24	Aug25	Sep10	Sep25	123	95	67	54
	32	May05	May25	Jun14	Sep05	Sep25	Oct15	155	122	90	46
	28	Apr22	May08	May23	Sep20	Oct08	Oct26	180	153	125	37
CANANDAIGUA 3 S	36	Apr30	May12	May24	Sep24	Oct07	Oct21	163	148	132	44
	32	Apr17	Apr29	May11	Oct02	Oct17	Nov01	191	170	149	36
	28	Apr05	Apr17	Apr28	Oct19	Nov02	Nov16	220	198	177	28
CANTON 4 SE	36	May14	Jun03	Jun22	Aug22	Sep07	Sep24	121	96	72	53
	32	May04	May20	Jun05	Sep08	Sep22	Oct06	145	124	103	46
	28	Apr18	May01	May14	Sep21	Oct03	Oct16	173	155	136	38
CHAZY	36	May09	May25	Jun10	Sep03	Sep15	Sep27	133	112	90	51
	32	Apr28	May13	May29	Sep14	Sep28	Oct11	155	137	119	44
	28	Apr14	Apr26	May08	Sep25	Oct06	Oct17	180	163	145	36
CHERRY VALLEY 2 NNE	36	May08	May25	Jun11	Sep05	Sep18	Oct01	137	115	93	51
	32	Apr29	May13	May26	Sep17	Sep28	Oct09	155	138	120	44
	28	Apr14	Apr28	May12	Sep28	Oct11	Oct24	185	165	146	35
COLDEN 1 N	36	May18	Jun03	Jun19	Sep01	Sep16	Sep30	123	104	86	52
	32	May05	May19	Jun02	Sep15	Sep28	Oct11	149	131	113	45
	28	Apr17	May03	May18	Sep29	Oct15	Oct31	187	165	143	35
CONKLINGVILLE DAM	36	May02	May18	Jun04	Sep15	Sep28	Oct12	154	132	111	51
	32	Apr20	May06	May22	Sep26	Oct11	Oct26	181	158	134	44
	28	Apr10	Apr22	May05	Oct04	Oct22	Nov09	208	182	156	35
COOPERSTOWN	36	May23	Jun05	Jun19	Aug30	Sep12	Sep25	117	98	79	53
	32	May06	May21	Jun06	Sep14	Sep25	Oct05	143	126	108	45
	28	Apr26	May07	May19	Sep22	Oct05	Oct17	166	149	133	36
CORTLAND	36	May01	May16	May31	Sep15	Sep27	Oct09	148	133	118	48
	32	Apr17	May01	May16	Sep25	Oct11	Oct27	183	162	141	39
	28	Apr04	Apr17	Apr29	Oct06	Oct25	Nov13	215	191	167	31
DANNEMORA	36	May06	May21	Jun06	Sep09	Sep22	Oct05	140	123	106	51
	32	Apr21	May09	May26	Sep22	Oct04	Oct15	169	147	125	44
	28	Apr14	Apr26	May09	Sep29	Oct15	Nov01	193	171	150	37
DANSVILLE	36	May08	May24	Jun08	Sep10	Sep23	Oct06	142	122	101	48
	32	Apr26	May12	May28	Sep23	Oct06	Oct20	167	147	126	40
	28	Apr12	Apr26	May09	Oct03	Oct19	Nov04	197	176	155	31
DELHI 2 SE	36	May18	Jun11	Jul04	Aug23	Sep08	Sep24	120	89	58	56
	32	May14	May27	Jun09	Sep04	Sep22	Oct09	139	117	95	47
	28	Apr25	May12	May29	Sep17	Oct11	Nov03	182	151	120	38
DEPOSIT	36	May16	May31	Jun16	Sep02	Sep16	Sep30	127	107	88	51
	32	May03	May19	Jun03	Sep21	Oct02	Oct13	151	135	119	43
	28	Apr25	May06	May17	Sep25	Oct12	Oct28	176	158	140	34
DOBBS FERRY ARDSLEY	36	Apr13	Apr29	May14	Sep27	Oct12	Oct27	190	165	141	36
	32	Apr03	Apr18	May02	Oct10	Oct25	Nov08	213	189	165	28
	28	Mar21	Apr03	Apr17	Oct26	Nov11	Nov27	244	221	198	20
ELMIRA	36	May06	May23	Jun09	Sep11	Sep23	Oct05	141	122	103	50
	32	Apr25	May09	May22	Sep19	Oct03	Oct18	168	147	125	42
	28	Apr10	Apr26	May12	Oct02	Oct18	Nov03	199	174	149	33
FRANKLINVILLE	36	May23	Jun08	Jun24	Aug28	Sep12	Sep28	118	95	72	56
	32	May09	May26	Jun11	Sep07	Sep22	Oct07	144	119	93	49
	28	Apr27	May14	May31	Sep21	Oct07	Oct23	163	145	127	39

+	-	-	+	+	_		1				+	-	-	
FREDONIA	36 32 28	Apr30 Apr20 Apr08	May13 May02 Apr18	May26 May14 Apr27	0	ep24 Oct08 Oct18	Oct08 Oct22 Nov05	Oct21 Nov05 Nov22	1	68 92 22	147 172 200	127 152 178		42 34 25
GENEVA RESEARCH FARM	36 32 28	Apr29 Apr16 Apr03	May12 Apr28 Apr15	May26 May10 Apr27	О	ep20 Oct01 Oct17	Oct03 Oct15 Oct31	Oct16 Oct29 Nov13	1	62 89 20	143 169 198	125 150 176		46 38 30
GLENS FALLS FARM	36 32 28	May08 Apr26 Apr18	May26 May13 Apr29	Jun14 May29 May11	S	ug26 ep11 ep24	Sep13 Sep26 Oct08	Oct02 Oct12 Oct22	1	39 62 78	109 136 161	79 110 144		51 44 36
GLENS FALLS AP	36 32 28	May07 Apr28 Apr13	May22 May08 Apr25	Jun07 May18 May08	S	ep05 ep16 ep24	Sep19 Sep29 Oct09	Oct03 Oct11 Oct24	1	40 55 85	119 143 166	97 131 146		51 44 35
GLOVERSVILLE	36 32 28	May08 Apr26 Apr14	May21 May08 Apr26	Jun03 May20 May07	S	ep11 ep21 ep30	Sep22 Oct03 Oct15	Oct03 Oct15 Oct31	1	38 60 90	123 147 172	108 134 154	Ī	51 44 35
GOUVERNEUR 3 NW	36 32 28	May17 May04 Apr25	Jun04 May20 May06	Jun22 Jun04 May17	S	ug23 ep07 ep20	Sep08 Sep21 Oct04	Sep25 Oct04 Oct17	1	22 41 67	96 123 150	69 105 133		53 45 37
GRAFTON	36 32 28	May06 Apr22 Apr12	May22 May08 Apr25	Jun06 May24 May07	S	ep10 ep16 ep28	Sep23 Oct02 Oct14	Oct05 Oct17 Oct29	1	41 67 90	123 146 171	105 125 152		49 42 34
GREENPORT POWER HOUSE	36 32 28	Apr07 Mar22 Mar18	May05 Apr19 Apr02	Jun01 May17 Apr17	О	Oct01 Oct08 Oct23	Oct19 Oct29 Nov16	Nov05 Nov19 Dec11	2	05 35 58	166 193 227	128 150 196		36 28 20
HEMLOCK	36 32 28	May08 Apr29 Apr15	May25 May12 Apr27	Jun12 May25 May10	S	ep01 ep15 Oct06	Sep21 Oct04 Oct21	Oct12 Oct23 Nov05	1	47 68 97	118 145 176	90 121 156		48 40 32
HUDSON CORRECTIONL FAC	36 32 28	Apr28 Apr21 Apr08	May13 May03 Apr22	May28 May15 May05	S	ep17 ep25 Oct05	Sep28 Oct09 Oct23	Oct10 Oct24 Nov11	1	56 75 07	138 159 184	119 142 161		46 39 30
INDIAN LAKE 2 SW	36 32 28	May28 May18 May01	Jun14 Jun01 May15	Jul01 Jun15 May29	S	ug16 ep06 ep19	Sep04 Sep17 Oct04	Sep23 Sep29 Oct18	1	08 26 60	81 107 141	55 88 122		60 53 44
ITHACA CORNELL UNIV	36 32 28	May14 May01 Apr18	May30 May14 Apr30	Jun15 May28 May12	S	ep04 ep18 ep30	Sep19 Oct03 Oct15	Oct03 Oct17 Oct30	1	33 59 86	111 141 167	89 123 148		50 42 33
JAMESTOWN 4 ENE	36 32 28	May15 May02 Apr16	Jun05 May20 May04	Jun25 Jun07 May21	S	ep03 ep10 ep24	Sep17 Sep30 Oct16	Sep30 Oct19 Nov06	1	29 61 00	103 132 165	77 103 129		53 45 36
LAKE PLACID 2 S	36 32 28	Jun04 May23 May06	Jun28 Jun07 May21	Jul22 Jun22 Jun04	Α	ug06 ug30 ep10	Aug24 Sep11 Sep25	Sep11 Sep23 Oct11	1	91 16 45	57 95 127	22 74 109		60 53 44
LAWRENCEVILLE 3 SW	36 32 28	May11 May01 Apr17	May30 May16 Apr29	Jun18 Jun01 May12	S	ug31 ep20 ep28	Sep16 Oct01 Oct10	Oct02 Oct11 Oct22	1	34 56 81	108 136 163	82 117 145		51 44 36
LIBERTY 1 NE	36 32 28	May10 Apr28 Apr16	May28 May13 Apr29	Jun14 May27 May11	S	ep04 ep14 ep26	Sep17 Sep28 Oct15	Sep30 Oct12 Nov02	1	34 57 91	111 138 168	89 118 145		53 46 36
LITTLE FALLS CITY RSVR	36 32 28	May10 Apr28 Apr14	May26 May09 Apr26	Jun11 May21 May07	S	ep03 ep13 ep23	Sep16 Sep27 Oct10	Sep30 Oct11 Oct27	1	34 56 86	113 140 167	92 124 147	ĺ	53 45 37
LITTLE VALLEY	36 32 28	May16 May09 Apr25	Jun02 May24 May06	Jun19 Jun08 May17	S	ep01 ep12 ep29	Sep17 Sep28 Oct15	Oct02 Oct15 Oct31	1	28 42 83	106 127 161	84 112 140	Ī	54 46 36
LOWVILLE	36 32 28	May16 Apr28 Apr18	May31 May15 May04	Jun16 Jun02 May20	S	ug29 ep11 ep20	Sep12 Sep24 Oct06	Sep27 Oct07 Oct23	1	27 50 77	103 131 154	79 113 132		54 45 37

								,			
MASSENA AP	36	May10	May23	Jun05	Aug30	Sep14	Sep29	133	113	94	52
	32	Apr22	May08	May24	Sep18	Sep28	Oct09	161	143	124	44
	28	Apr14	Apr25	May06	Sep25	Oct08	Oct20	185	165	146	37
MIDDLETOWN 2 NW	36	Apr20	May01	May12	Sep22	Oct06	Oct20	176	157	139	41
	32	Apr07	Apr17	Apr28	Oct03	Oct17	Nov01	202	182	163	33
	28	Mar29	Apr08	Apr18	Oct17	Nov03	Nov19	226	208	189	25
MILLBROOK	36	May06	May23	Jun09	Sep03	Sep17	Sep30	135	116	96	51
	32 28	Apr20	May09	May29	Sep13	Sep30	Oct16 Oct30	167	142 169	118 144	43 35
	28	Apr09	Apr27	May14	Sep28	Oct14	Oct30	195	169	144	35
MINEOLA	36	Apr04	Apr20	May05	Oct07	Oct22	Nov07	209	185	160	32
	32 28	Mar25 Mar11	Apr08 Mar26	Apr23 Apr11	Oct19 Nov04	Nov08 Nov23	Nov28 Dec12	239 267	213 241	187 215	23 16
MOLIONIKI MKE											
MOHONK LAKE	36 32	Apr20	May02	May14	Sep27	Oct10 Oct22	Oct23 Nov06	179 199	160	140 162	42 35
	28	Apr13 Apr03	Apr24 Apr14	May04 Apr24	Oct07 Oct26	Nov04	Nov13	219	180 204	189	27
MORRISVILLE 6 SW	36	May11	Jun02	Jun24	Sep02	Sep14	Sep27	131	104	77	52
WORKS VILLE O OVV	32	Apr30	May15	May30	Sep13	Sep26	Oct09	156	134	112	45
	28	Apr18	Apr30	May12	Sep27	Oct15	Nov01	189	167	145	36
MOUNT MORRIS 2 W	36	May02	May18	Jun02	Sep17	Sep28	Oct08	150	132	114	48
-	32	Apr21	May04	May16	Sep27	Oct10	Oct24	176	159	141	40
	28	Apr10	Apr20	Apr30	Oct12	Oct25	Nov08	206	187	168	31
NEWCOMB	36	May24	Jun14	Jul04	Aug16	Sep03	Sep21	110	80	51	61
	32	May09	May29	Jun18	Aug30	Sep17	Oct04	138	110	81	54
	28	May01	May15	May29	Sep17	Sep30	Oct14	158	138	117	46
NEW YORK AVE V BROOKLYN	36	Apr01	Apr11	Apr21	Oct21	Nov05	Nov21	227	207	187	28
	32	Mar21	Apr01	Apr13	Nov02	Nov18	Dec03	253	229	206	19
	28	Mar10	Mar24	Apr07	Nov14	Nov29	Dec13	271	249	226	14
NEW YORK CITY CENTRAL PK	36	Apr04	Apr14	Apr24	Oct21	Nov02	Nov13	215	201	187	28
	32	Mar20	Apr01	Apr13	Oct29	Nov15	Dec02	251	227	203	20
	28	Mar11	Mar25	Apr09	Nov14	Nov28	Dec13	269	247	226	14
NEW YORK JFK INTL AP	36	Apr03	Apr11	Apr19	Oct21	Nov02	Nov13	216	204	191	28
	32	Mar19	Mar31	Apr11	Oct31	Nov17	Dec04	252	230	209	20
	28	Mar09	Mar23	Apr06	Nov13	Nov27	Dec10	267	248	228	14
NEW YORK LA GUARDIA AP	36	Mar31	Apr10	Apr20	Oct21	Nov06	Nov22	230	210	189	27
	32	Mar20	Apr01	Apr12	Nov06	Nov20	Dec04	252	233	213	19
	28	Mar09	Mar21	Apr03	Nov16	Nov30	Dec15	272	254	235	13
NORWICH	36	May22	Jun04	Jun16	Aug29	Sep14	Oct01	124	102	80	53
	32	May05	May20	Jun05	Sep12	Sep24	Oct07	144	126	109	45
	28	Apr19	May02	May15	Sep25	Oct11	Oct26	181	161	141	35
OGDENSBURG 4 NE	36	Apr28	May19	Jun08	Sep09	Sep24	Oct09	152	128	103	49
	32 28	Apr19 Apr08	May03 Apr22	May18 May07	Sep21 Sep26	Oct02 Oct09	Oct14 Oct23	169 189	151 169	134 150	42 34
OLD FORGE	36	May25	Jun21	Jul19	Aug11	Aug31	Sep19	110	70	29	61
	32 28	May13 Apr29	Jun07 May21	Jul01 Jun12	Aug28 Sep09	Sep13 Sep26	Sep28 Oct13	133 160	97 127	62 95	54 46
OSWEGO EAST	36					Oct06	Oct21	165	146	126	43
OSWEGO EAST	30	Apr29 Apr16	May12 Apr28	May26 May11	Sep21 Sep30	Oct06	Oct21	192	170	148	35
	28	Apr02	Apr14	Apr26	Oct19	Nov02	Nov16	223	201	179	26
PENN YAN	36	May03	May16	May28	Sep20	Oct03	Oct16	159	139	120	47
	32	Apr23	May03	May14	Sep26	Oct12	Oct27	181	161	140	39
	28	Apr10	Apr22	May03	Oct15	Oct29	Nov12	210	189	168	30
PERU 2 WSW	36	May10	May26	Jun11	Sep08	Sep20	Oct02	137	116	95	51
	32	Apr29	May12	May25	Sep21	Oct01	Oct11	159	141	124	44
	28	Apr18	Apr29	May09	Sep27	Oct09	Oct21	178	162	146	35
PORT JERVIS	36	May01	May15	May28	Sep17	Sep27	Oct07	151	135	119	45
	32	Apr22	May05	May18	Sep27	Oct09	Oct21	172	157	141	38
	28	Apr10	Apr21	May02	Oct05	Oct20	Nov04	203	182	160	29

POUGHKEEPSIE	36	May01	May14	May28	Sep15	Sep25	Oct06	150	133	116	47
	32	Apr21	May03	May14	Sep24	Oct09	Oct24	182	159	135	40
	28	Apr06	Apr16	Apr27	Oct05	Oct20	Nov04	202	186	169	31
RAY BROOK	36	May29	Jun19	Jul10	Aug13	Aug29	Sep14	97	71	44	60
	32	May15	Jun01	Jun18	Sep02	Sep14	Sep25	125	104	83	53
	28	May01	May15	May29	Sep12	Sep27	Oct13	152	134	117	44
RIVERHEAD RESEARCH FARM	36	Apr13	Apr26	May08	Oct07	Oct19	Oct31	194	176	157	34
	32	Mar29	Apr13	Apr28	Oct18	Nov01	Nov14	220	201	181	26
	28	Mar17	Mar30	Apr12	Nov06	Nov19	Dec03	251	233	216	17
ROCHESTER MONROE CO AP	36	Apr30	May14	May28	Sep20	Oct02	Oct14	160	140	120	45
	32	Apr16	Apr29	May12	Sep29	Oct13	Oct27	185	166	147	37
	28	Apr06	Apr17	Apr29	Oct19	Nov01	Nov13	216	197	178	28
SARATOGA SPRINGS 4 SW	36	May10	May25	Jun08	Sep08	Sep19	Sep30	135	117	98	50
	32	Apr27	May08	May20	Sep16	Sep28	Oct10	157	142	127	43
	28	Apr17	Apr27	May08	Sep23	Oct08	Oct22	179	163	146	34
SETAUKET STRONG	36	Apr16	Apr27	May07	Sep15	Oct07	Oct28	185	162	140	41
	32	Mar29	Apr14	May01	Oct09	Oct27	Nov15	218	195	173	34
	28	Mar17	Mar30	Apr12	Oct27	Nov04	Nov12	233	219	204	27
SODUS CENTER	36	May04	May20	Jun05	Sep21	Sep30	Oct10	151	133	115	45
	32	Apr22	May03	May14	Sep26	Oct12	Oct28	183	161	139	36
	28	Apr07	Apr17	Apr27	Oct10	Oct24	Nov06	207	189	170	28
SYRACUSE HANCOCK INTL AP	36	Apr30	May12	May24	Sep17	Sep28	Oct09	156	138	121	45
	32	Apr18	Apr28	May08	Sep29	Oct13	Oct28	188	168	148	37
	28	Apr08	Apr18	Apr28	Oct09	Oct25	Nov09	209	189	169	28
TULLY HEIBERG FOREST	36	May12	May30	Jun17	Sep03	Sep18	Oct02	131	110	89	52
	32	May02	May18	Jun03	Sep16	Oct01	Oct15	158	135	112	45
	28	Apr21	May04	May17	Sep26	Oct12	Oct28	184	160	137	37
UTICA FAA AP	36	May02	May16	May30	Sep15	Sep28	Oct12	155	135	114	47
	32	Apr19	May03	May17	Sep24	Oct10	Oct26	180	159	138	39
	28	Apr09	Apr19	Apr28	Oct03	Oct20	Nov05	203	183	163	30
WARSAW 6 SW	36	May11	May26	Jun10	Sep03	Sep19	Oct04	133	115	96	52
	32	Apr29	May14	May29	Sep13	Sep29	Oct15	162	138	113	45
	28	Apr13	Apr27	May11	Oct02	Oct17	Nov02	195	172	150	36
WATERTOWN	36	May03	May19	Jun05	Sep16	Sep27	Oct07	149	130	111	48
	32	Apr23	May04	May14	Sep23	Oct05	Oct18	169	154	139	40
	28	Apr11	Apr21	Apr30	Oct07	Oct19	Oct31	196	181	165	33
WATERTOWN AP	36	May10	May28	Jun15	Aug30	Sep14	Sep30	130	108	87	50
	32	Apr27	May15	Jun02	Sep09	Sep25	Oct10	153	132	111	42
	28	Apr18	Apr30	May11	Sep21	Oct04	Oct17	176	157	137	34
WESTFIELD 2 SSE	36	Apr27	May09	May22	Oct02	Oct17	Nov01	179	160	140	42
	32	Apr12	Apr23	May03	Oct14	Oct28	Nov12	209	188	166	34
	28	Apr03	Apr15	Apr27	Oct28	Nov11	Nov24	229	209	188	25
WHITEHALL	36	Apr28	May12	May27	Sep18	Sep28	Oct08	154	138	123	47
	32	Apr21	May01	May11	Sep24	Oct06	Oct19	173	157	142	40
	28	Apr11	Apr21	Apr30	Oct06	Oct22	Nov07	203	183	164	31
YORKTOWN HEIGHTS 1 W	36	Apr19	May02	May16	Sep26	Oct09	Oct22	179	159	139	41
	32	Apr08	Apr19	Apr29	Oct02	Oct19	Nov04	203	182	162	34
	28	Mar30	Apr09	Apr18	Oct22	Nov03	Nov15	223	207	192	26

Notes:

- (1) Probability of later date in spring (thru Jul 31) than indicated.
- (2) Probability of earlier date in fall (beginning Aug 1) than indicated.
- (3) Probability of longer than indicated freeze free period.
- (4) Probability of Freeze/Frost in the yearly period (percent of days with temperatures at or below the threshold temperature).

NYS Department of Agriculture and Markets - Pollinator Habitat Restoration Guideline Checklist

This checklist was developed by the New York State Department of Agriculture and Markets to provide guidance to projects wishing to develop utility or other commercial sites as pollinator friendly habitat. The Department encourages projects to address the following items in their vegetation management plans:

1. Planning and Site Preparation

- Site selection does not negatively affect human health or safety
- Existing conditions suggest vegetative life can be supported
- The site is not on highly erodible land or steep slopes
- The site was placed with consideration of surrounding aquatic resources, weed pressure, and stormwater nutrient loading
- Appropriate buffers from pesticide use are planned for the site
- o Site preparation will be done in accordance with NRCS Standard and State and Local Law

2. Seeding, Planting, and Community Establishment

- NRCS NY Pollinator Mix (2017) (Wet or Dry Mesic) used in restoration
- Sites sown at 7.5-8 PLS/acre
- Seeds sown and plants installed per suppliers' instructions

3. Operation & Maintenance (O&M)

- Invasive species planned to be effectively managed (<5% after two years)
- Seeded species cover planned to be established (>70% after two years)
- Corrective measures are planned if the site does not meet prescribed invasive and planted species cover
- Woody species will be regularly removed, and site will be mowed annually

Project Name:	Project Sponsor/Consultant:
Project Location (Lat. , Long.):	Project Size (Acres):